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1 Introduction

For a single object, an auction is a measurable mapping q : TN → [0, 1]N satisfying,
for all profile p ∈ TN ,

N∑
i=1

qi(p) ≤ 1, (1)

where T is the type space for a generic bidder1 and N is number of bidders.

Given an auction, q, each bidder i can compute the interim probability, Qi(ti), that
he wins when his type is ti, by

Qi(ti) =

∫
TN−1

qi(t1, · · · , tN)dμN−1(t1, · · · , t̂i, · · · , tN), (2)

where μ is the probability measure on T . Notice that we may drop the index i when
the underlying auction q is symmetric. (Maskin and Riley [4] showed that in the i.i.d.
case, a seller need only consider a symmetric auction.)

Definition 1 We say that Q is the reduced form of q and that q implements Q. Q
is said to be implementable if there is some symmetric auction q such that (2) holds
for each ti ∈ T .

Matthews [5] conjectured that if a function satisfies the following feasibility MRM
Condition (this terminology is given in [3]) for all measurable sets, then it is a reduced
form:

MRM Condition: for any given set of types (A), the probability that a winner is
of a type from this set (N

∫
A
Qdμ) must be less than or equal to the probability

that there exists a bidder from this set (1− μ(Ac)N ).

1I implicitly assume here that the type spaces identical for all the bidders.
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This reduced form representation using only the interim allocation probability has
proven to be very useful in reducing the dimension of the problem in practice [1].

Border [2] proved Matthews’ conjecture, namely he proved the following proposition:

Proposition 2 Let Q : T → [0, 1] be measurable. Then Q is implementable by a
symmetric auction if and only if for each measurable set of types A ⊂ T , the following
inequality holds: ∫

A

Q(t)dμ(t) ≤ 1− μ(Ac)N

N
. (3)

The necessity part of the result follows very directly from a basic technique of in-
equality relaxation. The harder part–the sufficiency part of the proof mainly relies
on a separating-hyperplane argument (the geometric form of Hahn-Banach Theorem).

Border [3] also gives another proof of this characterization of the reduced form (MRM
Condition) for even more general case (not necessarily symmetric, Proposition 4) by
considering finite type space and taking advantage of the Theorem of Alternatives in
linear programming, which, at the end of day, can be viewed as a variation of the
separating hyperplane theorem.

Proposition 3 The list P = (P1, P2, · · · , PN) of functions is the reduced form of a
general (not necessarily symmetric) auction p = (p1, p2, · · · , pN) if and only if for

every subset A ⊂ T :=
N⋃
i=1

{i} × Ti = {(i, τ) : 1 ≤ i ≤ N, τ ∈ Ti} of individual-type

pairs, we have ∑
(i,τ)∈A

Pi(τ)μ
�
i (τ) ≤ μ({t ∈ T : ∃(i, τ) ∈ A, ti = τ}), (4)

where μ�
i (·) is the marginal probability distribution on Ti.

In this note, I will generalize Proposition 3 to the auctions where the bidders’s type
spaces are continuous and unnecessarily identical.

2 Continuous Version of Proposition 3

To accomplish this task, I first introduce the notations we are going to use:

There areN unnecessarily symmetric bidders in the market, indexed as i = 1, 2, . . . , N
and the type space of bidder i is denoted as Ti, which I do NOT assume to be finite



c©Shouqiang Wang 3

here. A profile of types is simply an element t := (t1, t2, · · · , tN) of the product space
T = T1×· · ·×TN . It is a common knowledge (to the sellers and all the bidders) that
a particular profile t is a random realization from the probability distribution μ on
T . The pair (T, μ) specifies the environment.

I further define the augmented type space T to include the information of identities of
the bidders together with the types of each bidder. To be precise, T is the collection
of identity-type pairs: 2

T := �N
i=1Ti, (6)

where �N
i=1 is the disjoint union operation.

Any subset A of T now can be expressed as

A = �N
i=1Ai, (7)

where Ai ⊂ Ti can be ∅.

An auction is defined to be an ordered list of probability assignments p = (p1, p2, · · · , pN),
where pi : T → [0, 1], i = 1, 2, . . . , N satisfy the following capacity constraint

N∑
i=1

pi(t) ≤ 1, ∀t ∈ T. (8)

What interests bidder i is to compute his or her interim probability of winning given
his or her own type. In order to express the interim probability, let us introduce more
notations. Denote T−i =

∏
j �=i

Tj and write t−i as a generic element in T−i. Hence,

(τ, t−i) ∈ Ti × T−i = T represents a generic element of T .

Let μ�
i (τ) denote the marginal probability distribution on Ti and μi(t

−i|τ) denote the
conditional probability distribution on T−i given that bidder i is of type τ , i.e.

μ�
i (τ) :=

∫
T−i

μ(τ, t−i)dt−i, ∀τ ∈ Ti; (9)

μi(t
−i|τ) :=

μ(τ, t−i)

μ�
i (τ)

, if μ�
i (τ) > 0, ∀t−i ∈ T−i. (10)

2By definition of disjoint union, an equivalent way of defining T is

T := ∪N
i=1{i} × Ti = {(i, τ) : 1 ≤ i ≤ N, τ ∈ Ti}. (5)
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We say that a subset A of T is measurable if Ai is measurable as a subset of Ti for all
i = 1, . . . , N . We can also define the support of T under the probability distribution
μ(·) to be

T � := �N
i=1T

�
i , (11)

where T �
i := {τ ∈ Ti : μ

�
i (τ) > 0}.

For each bidder i and all the type τ ∈ Ti, we define a function Pi : Ti → [0, 1] as
follows:

Pi(τ) :=

{ ∫
T−i pi(τ, t

−i)μi(t
−i|τ)dt−i, if τ ∈ T �

i

any value if τ �∈ T �
i

(12)

Finally, we are able to formulate the reduced form of the auction p = (p1, p2, · · · , pN):
define a function P := �N

i=1Pi : T → [0, 1] as follows

P(τ) = Pi(τ), if τ ∈ Ti. (13)

Generally speaking, we can define the disjoint union of the functions fi on Ti, denoted
as f = �N

i=1fi, as
f(τ) = fi(τ), if τ ∈ Ti. (14)

And for any two functions f = �N
i=1fi and h = �N

i=1hi, we have

f 
 h = �N
i=1(fi 
 hi), (15)

where 
 can be any of the operations +, -, × and ÷.

Next we define the ambient space we are going to work on. Let L∞(T ,�N
i=1μ

�
i )

denote the set of all functions on T that are essentially bounded under the norm

‖f‖L∞(T ,�N
i=1μ

�
i )
:=

N∑
i=1

‖fi‖L∞(Ti,μ�
i )
(or equivalently3, ‖f‖L∞(T ,�N

i=1μ
�
i )
:=

N
max
i=1

‖fi‖L∞(Ti,μ�
i )
)

for any f = �N
i=1fi, where ‖fi‖L∞(Ti,μ�

i )
is the usual essential bound on the space Ti

with probability measure μ�
i . For the brevity of notation, we denote ‖f‖L∞(T ,�N

i=1μ
�
i )

as ‖f‖∞T . Similarly, we can define L1(T ,�N
i=1μ

�
i ) equipped with the norm ‖g‖1T =

N∑
i=1

∫
Ti
|gi(τ)|μ�

i (τ)dτ for any g = �N
i=1gi. Since L∞(Ti, μ

�
i ) is the dual of L1(Ti, μ

�
i )

under the usual pairing. It is very easy to see that L∞(T ,�N
i=1μ

�
i ) is the dual of

L1(T ,�N
i=1μ

�
i ) under the pairing

〈f , g〉 =
N∑
i=1

∫
Ti

fi(τ)gi(τ)μ
∗(τ)dτ. (16)

3I will use these two norms interchangeably in the later.
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Now topologize L∞(T ,�N
i=1μ

�
i ) with its weak*, or σ(L∞,L1), topology.

For any given A = �N
i=1Ai ⊂ T , χA := �N

i=1χAi
denotes the characteristics function

on T defined as
χA(τ) = χAi

(τ), if τ ∈ Ti, (17)

where χAi
is the usual characteristics function on Ti.

χA defines a linear functional on L∞(T ,�N
i=1μ

�
i ) through (16), namely:

〈χA,P〉 :=
N∑
i=1

〈χAi
, Pi〉 =

N∑
i=1

∫
Ai

Pi(τ)μ
�
i (τ)dτ (18)

Since each χAi
is a linear functional on L∞(Ti, μ

�
i ), (18) is indeed a linear functional

on L∞(T ,�N
i=1μ

�
i ) under the weak* topology specified above.

With these preparations, we are able to state the continuous version of MRM condi-
tion:

Theorem 4 A measurable function P = �N
i=1Pi on T is a reduced form auction (of

some auction p) if and only if for any measurable4 A ⊂ T ,

〈χA,P〉 ≤ μ({t ∈ T : ∃i, s.t. ti ∈ Ai}) (19)

Let us start the proof of Theorem 4 by first pointing out what is μ({t ∈ T :
∃i, s.t. ti ∈ Ai})

Lemma 5 For any subset A ⊂ T ,

μ({t ∈ T : ∃i, s.t. ti ∈ Ai}) = μ(∪N
i=1Ai × T−i), (20)

where we notice that ∪N
i=1Ai × T−i is NOT a disjoint union.

Proof: Obvious.

Proof:[Necessity of Theorem 4]

We first notice that

〈χAi
, Pi〉 :=

∫
Ai

Pi(τ)μ
�
i (τ)dτ

=

∫
Ai×T−i

pi(t)μ(t)dt (by (10), (12) and Tonelli’s Theorem)

≤
∫
∪N
i=1Ai×T−i

pi(t)μ(t)dt. (21)

4A subset A = �N
i=1Ai ⊂ T is said to be measurable if Ai is measurable in Ti.



c©Shouqiang Wang 6

Therefore,

〈χA,P〉 =
N∑
i=1

〈χAi
, Pi〉

≤
N∑
i=1

∫
∪N
i=1Ai×T−i

pi(t)μ(t)dt (by (21))

≤
∫
∪N
i=1Ai×T−i

μ(t)dt (by (8))

= μ({t ∈ T : ∃i, s.t. ti ∈ Ai}) (by (20))

To prove the reverse direction, we intend to use a infinite-dimension version of sepa-
rating hyperplane argument (Hahn-Banach Theorem). In order to accomplish this, let
P denote the set of all the reduced form auctions and I will show that P is a compact
convex subset of L∞(T ,�N

i=1μ
�
i ) under the weak* topology specified previously.

The convexity of P is pretty clear: suppose P, P̃ ∈ P are the reduced form of the
auction p and p̃ respectively; then αP+ (1− α)P̃ is the reduced form of the auction
αp+ (1− α)p̃ and hence αP+ (1− α)P̃ ∈ P.

Lemma 6 P is convex and compact w.r.t. σ(L∞(T ,�N
i=1μ

�
i ),L1(T ,�N

i=1μ
�
i )).

Proof: Convexity is already justified above. Let A be the set of all auctions, i.e.

A :=

{
p = (p1, · · · , pN) ∈

N∏
i=1

L∞(T, μ) :
N∑
i=1

pi(t) ≤ 1, ∀t ∈ T

}
. (22)

Using a similar argument in the proof of Lemma 5.4 of [2], we can show that A is

σ(
N∏
i=1

L∞(T, μ),
N∏
i=1

L1(T, μ)) compact.

Now define Λ : A → P to be the mapping from an auction p to its correspond-

ing reduced form P. I want to show that Λ is continuous, where
N∏
i=1

L∞(T, μ) is

equipped with the weak* topology (σ(
N∏
i=1

L∞(T, μ),
N∏
i=1

L1(T, μ))) and L∞(T ,�N
i=1μ

�
i )

is equipped with the weak* topology σ(L∞(T ,�N
i=1μ

�
i ),L1(T ,�N

i=1μ
�
i )).

Let p(k) → p in σ(
N∏
i=1

L∞(T, μ),
N∏
i=1

L1(T, μ)). Let f ∈ L1(T ,�N
i=1μ

�
i ), define f̃ =
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(f̃1, · · · , f̃N) ∈
N∏
i=1

L1(T, μ) by f̃i(t) = fi(ti). Then, by definition (12)

〈f ,Λp(k)〉 =
N∑
i=1

∫
T

fi(ti)p
(k)
i (t)μ(t)dt = 〈f̃ ,p(k)〉. (23)

Since p(k) → p in σ(
N∏
i=1

L∞(T, μ),
N∏
i=1

L1(T, μ)), we have 〈f̃ ,p(k)〉 converges to 〈f̃ ,p〉 =

〈f ,Λp〉. Since f ∈ L1(T ,�N
i=1μ

�
i ) is arbitrary, we have Λp(k) → Λp in the weak*

topology (i.e. σ(L∞(T ,�N
i=1μ

�
i ),L1(T ,�N

i=1μ
�
i ))), proving the continuity of Λ.

Now since P = Λ(A) with A weak* compact and Λ continuous in the above sense, P
is compact w.r.t. σ(L∞(T ,�N

i=1μ
�
i ),L1(T ,�N

i=1μ
�
i )).

In order to transform the infinite-dimension into a finite-dimension argument, we now
introduce the simple functions on T . The simple functions on T are the linear com-
bination of finitely many characteristics functions on T , namely, any simple function
on T is the disjoint union of the simple functions on Ti, i.e. of the following form:

�N
i=1

Li∑
j=1

αi
jχAj

i
, (24)

where {A1
i , · · · , ALi

i } are finitely many pairwise disjoint subsets of Ti and χAj
i
are the

characteristics functions on Ti and hence
∑Li

j=1 α
i
jχAj

i
is the characteristics function

on Ti.

Lemma 7 The simple functions on T are dense in L1(T ,�N
i=1μ

�
i ).

Proof: Let f = �fi ∈ L1(T ,�N
i=1μ

�
i ) be any given function and its norm is, by

definition,

‖f‖1T =
N∑
i=1

‖fi‖L1(Ti,μ�
i )
. (25)

And clearly, we have fi ∈ L1(Ti, μ
�
i ) for all i = 1, 2, . . ., N. Since the simple functions

on Ti are dense in L1(Ti, μ
�
i ). Hence, for any ε > 0, there exists a simple function∑Li

j=1 α
i
jχAj

i
on Ti for each i = 1, 2, . . . , N such that ‖fi−

∑Li

j=1 α
i
jχAj

i
‖L1(Ti,μ�

i )
≤ ε/N .

Then, by definition, we have

‖f −�N
i=1

Li∑
j=1

αi
jχAj

i
‖1T =

N∑
i=1

‖fi −
Li∑
j=1

αi
jχAj

i
‖L1(Ti,μ�

i )
≤ ε. (26)

Therefore, we show that the simple functions on T are dense in L1(T ,�N
i=1μ

�
i ).
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Lemma 8 Let P̄ = �N
i=1P̄i ∈ L∞(T ,�N

i=1μ
�
i ) be such that P̄i : Ti → [0, 1] (the ball

of radius N in L∞(T ,�N
i=1μ

�
i )). And suppose the simple function �N

i=1

∑Li

j=1 α
i
jχAj

i

separates P̄ from P, i.e. for all P ∈ P,

〈�N
i=1

Li∑
j=1

αi
jχAj

i
, P̄〉 > 〈�N

i=1

Li∑
j=1

αi
jχAj

i
,P〉. (27)

Then for some measurable set A = �N
i=1Ai ∈ T ,

〈χA, P̄〉 > μ(∪N
i=1Ai × T−i) (28)

Proof: By definition, we may assume that all the subsets {Aj
i} are pairwise disjoint.

Now, rearrange the order of {Aj
i} to be

Aj1
i1
, Aj2

i2
, · · · , AjL

iL
,

where L = L1 + L2 + · · · + LN so that the corresponding constant coefficients are
sorted in descending order5:

αj1
i1
> αj2

i2
> · · · > αjK

iK
> 0 ≥ α

jK+1

iK+1
> · · · > αjL

iL
. (29)

Denote the sequence of subsets
{
Aj1

i1
, Aj2

i2
, · · · , AjK

iK

}
as A and define an auction qA

generated by the sequence of subsets A as follows6:

∀t ∈ Aj1
i1
× T−i1 , qA

i1
(t) = 1 and qA

i (t) = 0 for all i �= i1;

∀t ∈ Aj2
i2
× T−i2 \ Aj1

i1
× T−i1 , qA

i2
(t) = 1 and qA

i (t) = 0 for all i �= i2;

· · ·
∀t ∈ AjK

iK
× T−iK \ ∪K−1

l=1 Ajl
il
× T−il, qA

iK
(t) = 1 and qA

i (t) = 0 for all i �= iK ;

∀t �∈ ∪K
l=1A

jl
il
× T−il, qA

i (t) = 0 for all i = 1, 2, . . . , K.

Notice that the auction defined above depends on the order of the subsets. Even
if the subsets are the same, the generated auctions would be totally different if the
orders of these subsets are different. Here is an example of the auctions generated by
A = {A2

1, A
1
2, A

3
1, A

1
1, A

2
2} for the case N = 2 (see Figure 1).

For comparison, let us also give the auction generated by A = {A3
1, A

2
2, A

2
1, A

1
2, A

1
1, }

for the case N = 2 (see Figure 2).

Let QA = �N
i=1Q

A
i = ΛqA , i.e. QA is the reduced form of the auction qA .

Next, we recursively define K subsets of T : A(1), A(2), · · · , A(K) as follows:

5Let P = 0 in inequality (27) and the nonnegativity of P̄ implies the existence of positive αj
i .

6This particular auction plays the role of hierarchical auction proposed in [2].
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A1
1 A2

1 A3
1

A1
2

A2
2

qA
1 = 1

qA
2 = 0

qA
1 = 0 qA

2 = 1 qA
1 = 0 qA

2 = 1

qA
1 = 1

qA
2 = 0

qA
1 = 1

qA
2 = 0

qA
1 = 1

qA
2 = 0

qA
1 = 1

qA
2 = 0

qA
1 = 0

qA
2 = 1

qA
1 = 0

qA
2 = 1

qA
1 = 0

qA
2 = 1

qA
1 = 0

qA
2 = 1

Figure 1: Auction generated by A = {A2
1, A

1
2, A

3
1, A

1
1, A

2
2} when N = 2.

• A(1) := �N
i=1Ai(1), where Ai(1) ⊂ Ti is given by

Ai(1) :=

{
Aj1

i1
, if i = i1,

∅, otherwise;

• A(k) := �N
i=1Ai(k), where Ai(k) ⊂ Ti is given by

Ai(k) :=

{
Ai(k − 1) ∪ Ajk

ik
, if i = ik,

Ai(k − 1), otherwise.

Claim

〈χA(k),Q
A 〉 = μ

(
k⋃

l=1

Ajl
il
× T−il

)
= μ

(
N⋃
i=1

Ai(k)× T−i

)
(30)
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A1
1 A2

1 A3
1

A1
2

A2
2

qA
1 = 1

qA
2 = 0

qA
1 = 0 qA

2 = 1
qA
1 = 0

qA
2 = 1

qA
1 = 1

qA
2 = 0

qA
1 = 1

qA
2 = 0

qA
1 = 0 qA

2 = 1
qA
1 = 0

qA
2 = 1

qA
1 = 0

qA
2 = 1

qA
1 = 1

qA
2 = 0

qA
1 = 1

qA
2 = 0

qA
1 = 1

qA
2 = 0

Figure 2: Auction generated by A = {A3
1, A

2
2, A

2
1, A

1
2, A

1
1, } when N = 2.

for k = 1, 2, . . . , K.

We now show this claim by induction on k:
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• As defined in (18), we have

〈χA(1),Q
A 〉 =

N∑
i=1

∫
Ai(1)×T−i

qA
i (t)μ(t)dt

=

∫
A

j1
i1
×T−i1

qA
i1 (t)μ(t)dt

=

∫
A

j1
i1
×T−i1

μ(t)dt

= μ(Aj1
i1
× T−i1),

which proves the result for k = 1.

• Induction Hypothesis: 〈χA(k−1),Q
A 〉 = μ

(
k−1⋃
l=1

Ajl
il
× T−il

)
.

• Now we calculate

〈χA(k),Q
A 〉 =

N∑
i=1

∫
Ai(k)×T−i

qA
i (t)μ(t)dt

=
N∑
i=1
i�=ik

∫
Ai(k−1)×T−i

qA
i (t)μ(t)dt+

∫
Aik

(k−1)∪Ajk
ik

×T−ik

qA
ik
(t)μ(t)dt

=

N∑
i=1

∫
Ai(k−1)×T−i

qA
i (t)μ(t)dt︸ ︷︷ ︸

μ

(
k−1⋃
l=1

A
jl
il
×T−il

)
(by Induction Hypothesis)

+

∫
A

jk
ik

×T−ik

qA
ik
(t)μ(t)dt

︸ ︷︷ ︸
μ

(
A

jk
ik

×T−ik\
k−1⋃
l=1

A
jl
il
×T−il

)
(by the definition of qA )

= μ

(
k⋃

l=1

Ajl
il
× T−il

)
,

which completes the proof of the Claim.

With all the above preparation, we are now ready to prove Lemma 8. Suppose
there is a subset A(k) = �N

i=1Ai(k) ∈ T for some k = 1, 2, . . . , K − 1 such that
〈χA(k), P̄−QA 〉 > 0, then we prove (28), because the above claim says:

〈χA(k),Q
A 〉 = μ

(
N⋃
i=1

Ai(k)× T−i

)
.
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So suppose the opposite:
〈χA(k), P̄−QA 〉 ≤ 0, (31)

for all k = 1, 2, . . . , K − 1. Denote QA
i (j) := 〈χAj

i
, QA

i 〉 and P̄i(j) := 〈χAj
i
, P̄i〉. Using

this notation and noticing that all the subsets Ajι
iι

are pairwise disjoint no matter
whether they belong to the same Ti or not, we may rewrite the above (31) as

k∑
ι=1

(
QA

iι (jι)− P̄iι(jι)
)
≥ 0, (32)

for all k = 1, 2, . . . , K − 1. And also, (27) implies

L∑
ι=1

αjι
iι

(
P̄iι(jι)−QA

iι (jι)
)
> 0. (33)

Taking the ι = 1 term to the right-hand side and dividing by αj1
i1
> 0 yields

L∑
ι=2

αjι
iι

αj1
i1

(
P̄iι(jι)−QA

iι (jι)
)
>
(
QA

i1
(j1)− P̄i1(j1)

)
≥ 0, (34)

where the second inequality follows from (32) for k = 1. (29), on the other hand
implies that αj1

i1
/αj2

i1
> 1. Hence, we may multiply αj1

i1
/αj2

i1
on both side of the first

inequality of (34) and then take the ι = 2 term to the right-hand side, yielding

L∑
ι=3

αjι
iι

αj2
i2

(
P̄iι(jι)−QA

iι (jι)
)
>
(
QA

i1 (j1)− P̄i1(j1)
)
+
(
QA

i2 (j2)− P̄i2(j2)
)
≥ 0, (35)

where the second inequality follows from (32) for k = 2. Repeating this process will
lead to

L∑
ι=K+1

αjι
iι

αjK
iK

(
P̄iι(jι)−QA

iι (jι)
)
>

K∑
ι=1

(
QA

iι (jι)− P̄iι(jι)
)
. (36)

Now we claim that QA
iι (jι) = 0 for all ι > K. By definition,

QA
iι (jι) = 〈χAjι

iι
, QA

iι 〉

=

∫
Ajι

iι
×T−iι

qA
iι (t)μ(t)dt.

Now notice that for all κ = 1, 2, . . . , K such that iκ = iι, all A
jκ
iκ
×T−iκ and Ajι

iι
×T−iι

are pairwise disjoint. Hence, Ajι
iι
× T−iι can have nonempty intersection with those

Ajκ
iκ × T−iκ such that iκ �= iι. By definition of qA , therefore,

qA
iι |Ajι

iι
×T−iι ≡ 0,
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which yields that QA
iι (jι) = 0 for all ι > K.

Since for all ι = K +1, . . . , L, we have αjι
iι ≤ 0 , αjK

iK
> 0, P̄iι(jι) ≥ 0 and QA

iι (jι) = 0,
it follows from (36),

0 >
K∑
ι=1

(
QA

iι (jι)− P̄iι(jι)
)
. (37)

Namely, we show that 〈χA(K), P̄− Q̄A 〉 > 0, or equivalently by the Claim (30),

〈χA(K), P̄〉 > μ

(
N⋃
i=1

Ai(K)× T−i

)
,

which completes our proof.

3 Conclusion

In this note, I generalized the results in [3] to continuous types. As a future direction,
we wish to show, in the same spirit of [2], that the above theorem can be simplified
by using a much smaller test subsets instead of all the measurable subsets of T . That
is the following corollary:

Corollary 9 Let P = (P1, P2, · · · , PN) and Eα
i := {τ ∈ Ti : Pi(τ) ≥ α} for any

α ∈ [0, 1], i = 1, 2, . . . , N . And define Ea := �N
i=1E

αi
i for any given vector a =

(α1, α2, · · · , αN) ∈ [0, 1]N . Then if for any given a ∈ [0, 1]N , P satisfies

〈χEa,P〉 ≤ μ({t ∈ T : ∃i, s.t. ti ∈ Eαi
i }), (38)

then P satisfies (19) for any measurable A ⊂ T .
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