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1 Introduction

In this technical note, we demonstrate the dual space of RΘ (the space of (continuous) functions
on a discrete topological space Θ) (Proposition 7 in this note), which is essentially the represen-
tation of C3/C5 properties in [3], where they utilize a characterization of discrete topology from
[2].

In this note, I will prove this representation result from a more abstract point of view, in the
hope that this approach may be applied to other topology structure in the future. The key idea
is to recognize that the representation of C3/C5 properties in [3] is actually a special case of the
linear functional representation in a locally convex TVS once we identify the “right” seminorm
representation of the discrete topology.

Section 2 introduces the concepts and results that we are going to use in the note. Section 3 proves
the representation of C3/C5 properties in [3] by embedding the space of RΘ in a locally convex
TVS equipped with with suitable seminorm. I finally point out some potential applications of
this abstract approach in Section 4.

2 Locally Convex TVS and Riesz Representation Theo-

rem

Just in order to be self-contained, I first hereby give the basic concepts and already well-known
results from topological vector spaces. All the following notation and results follow from [1]1.

1Different textbooks may have different definitions and notations, but I will use the version stated in [1].
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Definition 1 A (real) topological vector space (TVS) is a vector space X together with a
topology, w.r.t which:

1. the vector addition X ×X →X defined by (x, y)→ x+ y is continuous;

2. the scaler multiplication R×X →X defined by (λ, x)→ λx is continuous.

Definition 2 A seminorm on a TVS X is a function p : X → [0,+∞) with the following
properties:

1. subadditivity: ∀x, y ∈X , p(x+ y) ≤ p(x) + p(y);

2. homogeneity: ∀λ ∈ R, x ∈X : p(λx) = |λ|p(x);

Definition 3 A locally convex TVS X is a TVS whose topology is defined by a family of semi-
norms P such that

1. ∩p∈P{x ∈X : p(x) = 0} = {0};

2. a subset U of X is open iff ∀x0 ∈ X there are p1, · · · , pn in P and ε1, · · · , εn > 0 such
that ∩nj=1 {x ∈X : pj(x− x0) < εj} ⊂ U .

The following proposition provides a characterization of continuous linear functionals on a locally
convex TVS. The finiteness of this characterization in proposition will play a fundamental role
in the proof of Section 3.

Proposition 4 F : X → R is a continuous linear functional on a locally convex TVS defined
by seminorms P if and only if there exist finitely many p1, p2, . . . , pl in P and positive scalers
λ1, λ2, . . . , λl such that

|F (x)| ≤
l∑

i=1

λipi(x),∀x ∈X .

Here we quote the famous Riesz Representation Theorem as a reference for possible future gen-
eralization. But in this note, we will only use a very limited version of the Theorem (see Remark
1), which is basically the linear functional representation on a finite dimensional space and can
actually be derived from elementary linear algebra.
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Theorem 5 (Riesz Representation) Let V be a locally compact space, M(V ) the space of
regular Borel signed measures and C0(V ) the space of continuous functions on V which vanish
at infinity. For each µ ∈M(V ), define Fµ : C0(V )→ R by

Fµ(f) :=

∫
fdµ,∀f ∈ C0(V ).

Then Fµ ∈ C0(V )∗ and the map µ→ Fµ is an isometric isomorphism of M(V ) onto C0(V )∗.

Remark 1 We will later use a special case of this theorem where V will be a finite set {v1, v2, . . . , vl}
with discrete topology (and hence is automatically locally compact). In that case, M(V ) is just
a space of l-dimensional real vector (µ1, µ2, . . . , µl) with number µi ∈ R assigned to point vi for
i = 1, 2, . . . , l. And C0(V ) = RV by virtue of the fact that any function on a discrete topology is
continuous and V is finite.

3 Proof of Key Result in [3]

Let Θ be a given topological space with discrete topology and denote as RΘ the space of all real-
valued functions2 defined on Θ with the pointwise convergence topology. [3] has already pointed
out that the RΘ is a locally convex TVS equipped with the natural product topology inherited
from R. Here we pointed out the topology of RΘ can be re-defined by the following family of
seminorms:

Lemma 6 Let K be the collection of finite subsets (hence they are compact) of Θ, i.e. K :=
{K ⊂ Θ : 0 < |K| <∞}, where |K| denotes the cardinality of subset K. Define seminorm3

pK(f) := sup{|f(θ)| : θ ∈ K},∀f ∈ RΘ (1)

and P := {pK : K ∈ K }. Then the product topology of RΘ is given by P.

Proof: First, we verify that such a P is well-defined. Notice that the singletons belong to K ,
and hence if p(f) = 0 for all p ∈P, then we have f(θ) = 0 for all θ ∈ Θ and hence f ≡ 0.

Notice that the basis for the product topology RΘ is of the form
∏

θ∈ΘOθ for Oθ open in R and
Oθ = R except for finitely many θ (see [2]). While the basis for the locally convex space RΘ is
of the form

∏m
i=1{f ∈ RΘ : pKi(f) < εi} with m finite (see [1]). Due to the finiteness of Ki, it is

immediate to see that these two topologies are equivalent.

2Since Θ is equipped with discrete topology, RΘ = C(Θ) the space of continuous functions on Θ.
3Actually, we may write pK(f) := max{|f(θ)| : θ ∈ K}, since K is finite.
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Remark 2 If K ⊂ K ′ for K,K ′ ∈ K , then we must have pK ≤ pK′.

The following result is the key of this note. It provides the characterization/representation of
hyperplanes in RΘ.

Proposition 7 F : RΘ → R is a continuous linear functional on RΘ, i.e. F ∈ (RΘ)∗, if and
only if there exist finitely many θ1, θ2, . . . , θl and signed measure on them µ1, µ2, . . . , µl such that
for all f ∈ RΘ

F (f) =
l∑

i=1

µif(θi). (2)

Proof: The ”If” direction is obvious, so we just concentrate on the ”only if” part. Suppose
F ∈ (RΘ)∗. Then by Proposition 4 and Lemma 6, there are K1, K2, . . . , Kn ∈ K (n is finite)
and positive numbers λ1, λ2, . . . , λn such that |F (f)| ≤

∑n
j=1 λjpKj(f). Let K := ∪nj=1Kj ∈ K

and λ = max{λj : 1 ≤ j ≤ n}. Then |F (f)| ≤ λpK(f) by Remark 2. Hence, if f ∈ RΘ and
f |K ≡ 0, then F (f) = 0.

Define a linear functional L : RK → R as follows: if g ∈ RK := C0(K) by Remark 1, let
g̃ ∈ RΘ := C(Θ) be such that g̃|K = g, i.e. g̃ is a continuous extension of g, and define
L(g) := F (g̃). It is very easy to verify that L is well-defined and is indeed linear. Now notice
that since K is finite, the seminorm pK(·) is actually the sup-norm ‖ · ‖C0(K) on C0(K), hence
we have

|L(g)| = |F (g)| ≤ λpK(g̃) = λ‖g‖C0(K).

Therefore, by Theorem 5 and its Remark 1, there exists a signed measure µ ∈ M(K) such that

L(g) =
∫
K
gdµ =

∑|K|
j=1 µjg(θj) where θj is the generic element of K, since K is finite. Hence,

for any f ∈ RΘ, we have

F (f) = L(f |K) =

∫
K

fdµ =

|K|∑
j=1

µjf(θj).

With the preparation of this key proposition, using the same hyperplane arguments as [3] did:
any closed convex subset in a locally convex space can be written as an intersection of a family
of closed affine hyperplanes, we then can easily obtain the key result in [3]:
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Theorem 8 (Proposition 1 in [3]) A property P is a C3 property if and only if there exists
a collection, indexed by α ∈ A , of finite sets of points {θβ}β∈Bα, {θγ}γ∈Γα and positive weights
{λβ}β∈Bα, {λγ}γ∈Γα that define a test of satisfaction of the form: f satisfies P if and only if∑

β∈Bα

λβf(θβ) ≤
∑
γ∈Γα

λγf(θγ).

Furthermore, if P is a C5 property, for each αinA , we can normalize the weights to sum to one.

4 Conclusion

From [3], we know that the core of the proof of Theorem 8 is to prove Proposition 7 here in
this note. My approach is to represent pointwise-convergence topology as a locally convex TVS
equipped with an appropriate seminorm, which then allows me to apply the linear functional
representation given in Proposition 4. This approach, together with the Riesz Representation
Theorem, may provide other useful linear functional representations under different topologies.
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